Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep eutectic solvents (DESs) have attracted interest due to their unique and favorable electrochemical characteristics. This study reported a novel binary glycerol-zinc salt deep eutectic solvents were prepared with a combination of hydrogen bond donor (glycerol (Gly)) and hydrogen bond acceptor (Zinc nitrate hexahydrate (ZNH)) at different molar ratios of 1:2, 1:3, 1:4, 1:5, and 1:6. The various physicochemical properties including viscosity, refractivity index, conductivity, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance (EIS) were measured. The results showed that among the various combinations tested, DES 1:2 resulted in a low viscosity value of 690, 500, 310, 220, and 160 mPa (mPa s) at shear rate values of 20, 30, 60, 100, and 200 respectively. Moreover, DES 1:2 resulted in more electrochemically stable solvents with a lower refractive index value of 1.446, and a higher conductivity () of 4.41 mS/cm. The findings found disclose the features, nature and of properties of prepared DESs as a potential solvents for different electrochemical storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339017 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!