In an attempt to increase biodiversity in natural plant fiber nonwovens, new sources of natural fibers must be discovered. Nonwoven fabric is a promising commercial product for upgrading the new bast fiber (TCF) and giving it an opportunity to be used in composite nonwoven applications. Two types of TCF nonwoven mats blended with polylactide fibers for one and polypropylene fibers for the other at a mass ratio of 50 : 50 were manufactured using carding and needling technology. The aim of the present work is to compare the different types of TCF-based nonwovens with other nonwovens based on commercial bast fibers, namely flax and hemp, known for their use in automotive interiors. The nonwoven fabrics were characterized in terms of weight per unit area, thickness, tensile strength and flexural rigidity. In addition, morphological aspects of fiber organization, density and distribution within the nonwoven reinforcement were observed using Scanning Electron Microscopy. The results revealed great variability in terms of surface density and thickness. Increasing the surface mass of nonwovens led to an increase in mechanical performance in terms of strength and stiffness, while retaining anisotropy in terms of fiber orientation, which has a significant effect on mechanical behavior due to the preferential fiber orientation generated during carding. In addition, the type of thermoplastic polymer fiber in the nonwoven mat has an influence on the characteristics evaluated. The results obtained showed that TCFs are good candidates, given their competitive performance and availability compared with flax and hemp fibers, and that they can be used in the same composite applications. Such a non-woven mattress based on TCFs from the tropical African region, manufactured using carding and needling technology, could open up opportunities to create new value-added products that can benefit these countries from an economic and ecological point of view.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345354 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17888 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland.
This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability.
View Article and Find Full Text PDFChemosphere
January 2025
Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China. Electronic address:
Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Biomed Eng Online
December 2024
ORTHOREBIRTH Co., Ltd., Yokohama, Japan.
Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.
View Article and Find Full Text PDFBiomaterials
May 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
Moisture induced by wound exudate is crucial throughout the wound repair process. The dressing directly affects the absorption, permeation, and evaporation of the wound exudate. However, most dressings in clinical often result in excessive dryness or moisture of wound due to their monotonous structure and function, leading to ineffective thermodynamic control of evaporation enthalpy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!