Evolution of the electrical double layer with electrolyte concentration probed by second harmonic scattering.

Faraday Discuss

Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), Institute of Materials Science (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: October 2023

Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative estimation of the thickness of the EDL can be obtained using simple theoretical models, following experimentally its evolution is not straightforward and can be even more complicated in nano- or microscale systems, particularly when changing the ionic concentration by several orders of magnitude. Here, we bring insight into the structure of the EDL of SiO nanoparticle suspensions and its evolution with increasing ionic concentration using angle-resolved second harmonic scattering (AR-SHS). Below millimolar salt concentrations, we can successively characterize inner-sphere adsorption, diffuse layer formation, and outer-sphere adsorption. Moreover, we show for the first time that, by appropriately selecting the nanoparticle size, it is possible to retrieve information also in the millimolar range. There, we observe a decrease in the magnitude of the surface potential corresponding to a compression in the EDL thickness, which agrees with the results of several other electroanalytical and optical techniques. Molecular dynamics simulations suggest that the EDL compression mainly results from the diffuse layer compression rather than outer-sphere ions (Stern plane) moving closer to the surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568258PMC
http://dx.doi.org/10.1039/d3fd00036bDOI Listing

Publication Analysis

Top Keywords

electrical double
8
double layer
8
second harmonic
8
harmonic scattering
8
ionic concentration
8
diffuse layer
8
edl
5
evolution electrical
4
layer
4
layer electrolyte
4

Similar Publications

Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.

View Article and Find Full Text PDF

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

Magnetic field probe-based co-simulation method for irregular volume-type inductively coupled wireless MRI radiofrequency coils.

Magn Reson Imaging

January 2025

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.

Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.

View Article and Find Full Text PDF

Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.

View Article and Find Full Text PDF

Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor.

Biosens Bioelectron

January 2025

Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:

Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!