Cyclic stretch modulates the cell morphology transition under geometrical confinement by covalently immobilized gelatin.

J Mater Chem B

Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Published: October 2023

Fibroblasts geometrically confined by photo-immobilized gelatin micropatterns were subjected to cyclic stretch on the silicone elastomer. By using covalently micropatterned surfaces, the cell morphologies such as cell area and length were quantitatively investigated under a cyclic stretch for 20 hours. The mechanical forces did not affect the cell growth but significantly altered the cellular morphology on both non-patterned and micropatterned surfaces. It was found that cells on non-patterns showed increasing cell length and decreasing cell area under the stretch. The width of the strip micropatterns provided a different extent of contact guidance for fibroblasts. The highly extended cells on the 10 μm pattern under static conditions would perform a contraction behavior once treated by cyclic stretch. In contrast, cells with a low extension on the 2 μm pattern kept elongating according to the micropattern under the cyclic stretch. The vertical stretch induced an increase in cell area and length more than the parallel stretch in both the 10 μm and 2 μm patterns. These results provided new insights into cell behaviors under geometrical confinement in a dynamic biomechanical environment and may guide biomaterial design for tissue engineering in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00421jDOI Listing

Publication Analysis

Top Keywords

cyclic stretch
20
cell area
12
cell
8
geometrical confinement
8
micropatterned surfaces
8
area length
8
μm pattern
8
stretch
7
cyclic
5
stretch modulates
4

Similar Publications

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

EFFECTS OF THERAPEUTIC TAPING ON CLINICAL SYMPTOMS OF STUDENTS WITH PRIMARY DYSMENORRHEA.

J Pediatr Adolesc Gynecol

January 2025

Faculty of Rehabilitation & Allied Health Sciences, Riphah International University, Islamabad, Pakistan. Electronic address:

Study Objectives: Primary Dysmenorrhea (PD) is a prevalent gynaecological condition affecting young females, characterized by cyclic, cramping pelvic pain with no organic pathology. It can significantly impact their Quality of life (QOL) and academic performance. The study aimed to determine the effect of therapeutic taping on clinical symptoms, QOL and academic performance of students with PD.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades.

View Article and Find Full Text PDF

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!