Evaluation of proton and carbon ion beam models in TReatment Planning for Particles 4D (TRiP4D) referring to a commercial treatment planning system.

Z Med Phys

Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany. Electronic address:

Published: July 2023

AI Article Synopsis

Article Abstract

Purpose: To investigate the accuracy of the treatment planning system (TPS) TRiP4D in reproducing doses computed by the clinically used TPS SyngoRT.

Methods: Proton and carbon ion beam models in TRiP4D were converted from SyngoRT. Cubic plans with different depths in a water-tank phantom (WP) and previously treated and experimentally verified patient plans from SyngoRT were recalculated in TRiP4D. The target mean dose deviation (ΔD) and global gamma index (2%-2 mm for the absorbed dose and 3%-3mm for the RBE-weighted dose with 10% threshold) were evaluated.

Results: The carbon and proton absorbed dose gamma passing rates (γ-PRs) were ≥99.93% and ΔD smaller than -0.22%. On average, the RBE-weighted dose D was -1.26% lower for TRiP4D than SyngoRT for cubic plans. In TRiP4D, the faster analytical 'low dose approximation' (Krämer, 2006) was used, while SyngoRT used a stochastic implementation (Krämer, 2000). The average ΔD could be reduced to -0.59% when applying the same biological effect calculation algorithm. However, the dose recalculation time increased by a factor of 79-477. ΔD variation up to -2.27% and -2.79% was observed for carbon absorbed and RBE-weighted doses in patient plans. The γ-PRs were ≥93.92% and ≥91.83% for patient plans, except for one proton beam with a range shifter (γ-PR of 64.19%).

Conclusion: The absorbed dose between TRiP4D and SyngoRT were identical for both proton and carbon ion plans in the WP. Compared to SyngoRT, TRiP4D underestimated the target RBE-weighted dose; however more efficient in RBE-weighted dose calculation. Large variation for proton beam with range shifter was observed. TRiP4D will be used to evaluate doses delivered to moving targets. Uncertainties inherent to the 4D-dose reconstruction calculation are expected to be significantly larger than the dose errors reported here. For this reason, the residual differences between TRiP4D and SyngoRT observed in this study are considered acceptable. The study was approved by the Institutional Research Board of Shanghai Proton and Heavy Ion Center (approval number SPHIC-MP-2020-04, RS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zemedi.2023.06.002DOI Listing

Publication Analysis

Top Keywords

rbe-weighted dose
16
proton carbon
12
carbon ion
12
treatment planning
12
patient plans
12
absorbed dose
12
trip4d syngort
12
dose
11
trip4d
10
ion beam
8

Similar Publications

Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.

View Article and Find Full Text PDF

The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.

View Article and Find Full Text PDF

Background And Purpose: In carbon ion radiotherapy (CIRT), different relative biological effectiveness (RBE) models have been used for calculating RBE-weighted dose (D). Conversion between current RBE predictions and introduction of novel approaches remains a challenging task. Our aim is to introduce a framework considering multiple RBE models simultaneously during CIRT plan optimization, easing the translation between D prescriptions.

View Article and Find Full Text PDF

Background: Clinical carbon ion beams offer the potential to overcome hypoxia-induced radioresistance in pancreatic tumors, due to their high dose-averaged Linear Energy Transfer (LETd), as previous studies have linked a minimum LETd within the tumor to improved local control. Current clinical practices at the Heidelberg Ion-Beam Therapy Center (HIT), which use two posterior beams, do not fully exploit the LETd advantage of carbon ions, as the high LETd is primarily focused on the beams' distal edges. Different LETd-boosting strategies, such as Spot-scanning Hadron Arc (SHArc), could enhance LETd distribution by concentrating high-LETd values in potential hypoxic tumor cores while sparing organs at risk.

View Article and Find Full Text PDF

The LET enhancement of energy-specific collimation in pencil beam scanning proton therapy.

J Appl Clin Med Phys

January 2025

Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, USA.

Purpose: To computationally characterize the LET distribution during dynamic collimation in PBS and quantify its impact on the resultant dose distribution.

Methods: Monte Carlo simulations using Geant4 were used to model the production of low-energy proton scatter produced in the collimating components of a novel PBS collimator. Custom spectral tallies were created to quantify the energy, track- and dose-averaged LET resulting from individual beamlet and composite fields simulated from a model of the IBA dedicated nozzle system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!