Exploring facile strategy for developing highly efficient emitters using water-insoluble luminophores has become a vital topic in electrochemiluminescence (ECL) immunoassay. In this work, an ECL-active and water-dispersive iridium(III) complex-based polymer dots (IrPdots) was fabricated by encapsulating water-insoluble tris[1-phenylisoquinolinato-C2, N] iridium(III) complexes [Ir(piq)] into poly-(styrene-co-maleic anhydride) (PSMA) matrix by a controllable nanoprecipitation process. The obtained IrPdots generated strong ECL signals in the presence of tri-n-propylamine (TPrA) and were used to label detection antibody (Ab) to act as ECL probes to indicate the signal changes when analyzing target antigen. To construct a sandwich immunosensor, Pd nanoparticles (NPs) decorated MoS/TiCT MXene nanocomposites (MoS/TiCT MXene/Pd) were fabricated as substrates to bind capture antibody (Ab), which could further amplify ECL signals via a coreaction-accelerating pathway to improve the detection sensitivity. When the cytokeratin 19 fragment 21-1 (CYFRA 21-1) was chosen as model analyte, the developed immunosensor displayed a good linear relationship ranging from 0.1 pg/mL to 50 ng/mL with a low detection limit of 95 fg/mL (S/N = 3) was achieved as well. This research proposed a facile and effective method of fabricating IrPdots as ECL probes for immunoassay using water-insoluble iridium complexes, which expanded the application scope of those water-insoluble luminophores for aqueous bioanalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341512 | DOI Listing |
Polym Chem
January 2025
Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
Poly(styrene--maleic anhydride) (SMAnh) is a petroleum-based copolymer with desirable properties that afford utility in both industrial and academic fields. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of the bioderived comonomers, indene and itaconic anhydride, was explored using three chain transfer agents with varying activity, and generally well-controlled ( < 1.40) polymerizations were observed.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland.
Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties.
View Article and Find Full Text PDFIn this study, specific additives were incorporated in polyhydroxyalcanoate (PHB) and polylactic acid (PLA) blend to improve its compatibility, and so enhance the cell metabolic activity of scaffolds for tissue engineering. The formulations were manufactured through material extrusion (MEX) additive manufacturing (AM) technology. As additives, petroleum-based poly(ethylene) with glicidyl metacrylate (EGM) and methyl acrylate-co-glycidyl methacrylate (EMAG); poly(styrene-co-maleic anhydride) copolymer (Xibond); and bio-based epoxidized linseed oil (ELO) were used.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2024
Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, USA; Biomedical Engineering Program, University of Nevada, Reno, NV, USA. Electronic address:
Recently, Mn-doped semiconductor nanocrystals (NCs) with high brightness, long lifetimes, and low-energy excitation are emerging for time-resolved luminescence biosensing/imaging. Following our previous work on Mn-doped NCs, in this work we developed poly(styrene-co-maleic anhydride) (PSMA)-encapsulated Mn-doped AgZnInS/ZnS NCs as signal transducers for immunoassay of capsular polysaccharide (CPS), a surface antigen and also a biomarker of Burkholderia pseudomallei which causes a fatal disease called melioidosis. To enhance the assay sensitivity, a surface treatment for PSMA-encapsulated NCs (NC-probes) was performed to promote the presence of carboxyl groups that help conjugate more anti-CPS antibodies to the surface of NC-probes and thus enhance bioassay signals.
View Article and Find Full Text PDFJ Hazard Mater
January 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China. Electronic address:
Acrylamide (AA) is a heat-processed potent food carcinogen that is widely used in industry, posing a significant risk to human health. Therefore, it is necessary to investigate the toxic effects and mechanism of AA. miR-21 is a representative biomarker during AA-induced carcinogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!