The present study focused to determine the neuroprotective effects of terpenoids in streptozotocin & nicotinamide-induced type-2 diabetes in rats. The in silico studies were carried out for 68 terpenoids using AutoDock 4.2. The in vitro cholinestrerase, α-amylase enzyme inhibitory assays were perfomed using standard procedures. For in vivo neuroprotective studies, male wistar rats were separated into five groups and each group comprised of six animals. Treatment groups were received low dose and high dose α-Bisabolol 100 and 200 mg/kg respectively, and the standard groups received rivastigmine 2 mg/kg, p.o. and metformin group 100 mg/kg, p.o. for 30 consecutive days. Administration of streptozotocin (45 mg/kg, i.p.) and nicotinamide (110 mg/kg, i.p.)-induced the type 2 diabetes in all groups except the control. The behavioural assessments such as Morris water maze, and open field test were performed and biochemical parameters such as acetylcholinesterase levels and enzymatic antioxidants and reduced glutathione level were estimated from brain homogenates. Treatment of diabetic rats with α-Bisabolol was lowered blood glucose level, improved spatial recognition memory in behavioural assessments in a concentration dependent manner. It can be concluded that α-Bisabolol could act as a potential drug candidate in the management of diabetic Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125817DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
8
effects terpenoids
8
diabetic rats
8
rats silico
8
groups received
8
behavioural assessments
8
terpenoids streptozotocin-nicotinamide-induced
4
streptozotocin-nicotinamide-induced diabetic
4
rats
4
silico vitro
4

Similar Publications

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!