Recently, we have developed heat pulse desorption/mass spectrometry (HPD/MS). In HPD/MS, a heated N gas pulse was directed to the sample surface and desorbed analytes were mass analyzed by corona discharge ionization/mass spectrometry using an Orbitrap mass spectrometer. In this work, HPD/MS was applied to the analysis of skin surface components sampled from the forehead, nose, and jaw of three volunteers. It was found that various kinds of biological compounds such as squalene, free fatty acids, wax esters, triacylglycerols, and amino acids were detected. The simultaneous detection of compounds with a wide range of proton affinities suggests that the occurrence of consecutive proton transfer reactions is less likely to occur in the present experimental system. This is mainly due to the short distance of 1.5 mm between the tip of the corona needle and the inlet of the mass spectrometer (i.e., proximity corona discharge ion source). Under this condition, the transition time of the primary reactant ions (e.g., HO) from the tip of the corona discharge needle to the ion sampling orifice is roughly estimated to be ∼20 μs. This value nearly corresponds to the reaction lifetime of exoergic proton transfer reactions with a rate constant: ∼10 cm s for the analytes of 1 ppm. Accordingly, analytes with concentrations less than 1 ppm would be ionized semi-quantitatively by the present method, making this method highly suitable for the rapid analysis of samples composed of complex mixture of compounds, e.g., non-target lipidomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115249DOI Listing

Publication Analysis

Top Keywords

corona discharge
16
heat pulse
8
pulse desorption/mass
8
desorption/mass spectrometry
8
proximity corona
8
mass spectrometer
8
proton transfer
8
transfer reactions
8
corona
5
analysis human
4

Similar Publications

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

Interface-engineered non-volatile visible-blind photodetector for in-sensor computing.

Nat Commun

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Ultraviolet (UV) detection is extensively used in a variety of applications. However, the storage and processing of information after detection require multiple components, resulting in increased energy consumption and data transmission latency. In this paper, a reconfigurable UV photodetector based on CeO/SrTiO heterostructures is demonstrated with in-sensor computing capabilities achieved through interface engineering.

View Article and Find Full Text PDF

Cold atmospheric pressure plasma (CAPP) comprises an ensemble of ionized gas, neutral particles, and/or reactive species. Electricity is frequently used to produce CAPP via a variety of techniques, including plasma jets, corona discharges, dielectric barrier discharges, and glow discharges. The type and flow rates of the carrier gas(es), temperature, pressure, and vacuum can all be altered to control the desired properties of the CAPP.

View Article and Find Full Text PDF

Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma.

Sci Total Environ

January 2025

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia.

Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited.

View Article and Find Full Text PDF

Rapid diagnosis of cerebrospinal fluid (CSF) leaks is critical as endoscopic endonasal skull base surgery gains global prominence. Current clinical methods such as endoscopic examination with and without intrathecal injection of fluorescent dye are invasive and rely on subjective judgment by physicians, highlighting the clinical need for label-free point-of-care (POC). However, a viable solution remains undeveloped due to the molecular complexity of CSF rhinorrhea mixed with nasal discharge and the scarcity of specific biomarkers, delaying sensor development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!