The present study aimed to improve the hydrolysis potential of paper mill sludge through a two-phase disintegration process. In Particular, attention was focused on removal of extracellular polymeric substance (EPS) i.e. deflocculation of sludge in order to improve the efficiency of subsequent disperser disintegration. During deflocculation, carbohydrate, protein and deoxyribonucleic acids (DNA) were used as assessment parameters. During disintegration, soluble chemical oxygen demand (SCOD) and suspended solids (SS) reduction were used as assessment index to evaluate the efficiency of disintegration. A greater EPS removal was attained while deflocculating the sludge at calcium peroxide dosage of 0.05 g/g suspended solids (SS) and at a temperature of 70 °C. When comparing the disintegrated samples, a clear variation was noted in deflocculated and disintegrated sludge (19.2%) than the disintegrated sludge alone (13.5%). This clearly shows the need for deflocculation prior to disintegration. Likewise, a higher biomethane production of 0.214 L/g COD was achieved in deflocculated and disintegrated sludge than the pretreated sludge alone. Deflocculation reduces sludge management cost from 170 USD (Disperser alone (D alone disintegration)) to 51 USD (Thermal calcium peroxide mediated-Disperser (TCaO-D disintegration), indicating the efficiency of the proposed disintegration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116635 | DOI Listing |
J Environ Manage
December 2024
Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:
In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China. Electronic address:
Water Res
January 2025
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China. Electronic address:
Waste activated sludge (WAS) presents both resource recovery potential and pollution risks, making its efficient treatment challenging. Anaerobic digestion is broadly recognized as a green and sustainable approach to WAS treatment, whose efficiency is easily impacted by the exogeneous pollutants in WAS. However, the impact of polyhexamethylene guanidine (PHMG), as a widely-used non-antibiotic disinfectant, on WAS digestion under semi-continuous flow conditions remains unclear.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:
Interpretable causal machine learning (ICML) was used to predict the performance of denitrification and clarify the relationships between influencing factors and denitrification. Multiple models were examined, and XG-Boost model provided the best prediction (R = 0.8743).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!