Nanoscale zero-valent iron (nZVI) has a high removal affinity toward arsenic (As). However, the agglomeration of nZVI reduces the removal efficiency of As and, thus, limit its application. In this study, we report an environmentally friendly novel composite of Chlorella vulgaris-supported nanoscale zero-valent iron (abbreviated as CV-nZVI) that exhibits a fast and efficient removal of As(III) from As-contaminated water. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize and analyze the CV-nZVI. These results indicated that the stabilization effect of C. vulgaris reduced the nZVI agglomeration and enhanced the reactivity of nZVI. The experiments showed a removal efficiency of 99.11% for As(III) at an optimum pH of 7.0. The adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the superior maximum adsorption capacities of 34.11 mg/g for As(III). The FTIR showed that the As(III) was adsorbed on the CV-nZVI surface by complexation reaction, and XPS indicated that oxidation reaction was also involved. After five reuse cycles, the removal efficiency of As(III) by CV-nZVI was 32.93%, suggesting that the CV-nZVI had some reusability and regeneration. Overall, this work provides a practical and highly efficient approach for As remediation in As-contaminated water, and simultaneously resolves the agglomeration problems of nZVI nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28168-7 | DOI Listing |
J Hazard Mater
January 2025
Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.
View Article and Find Full Text PDFToxics
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
Recently, the activation of chlorine dioxide (ClO) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe) being employed to activate ClO for soil polycyclic aromatic hydrocarbon (PAH) removal.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong T'echnology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, china.
Nano zero-valent iron (nZVI) is widely used for polychlorinated biphenyl (PBDE) remediation due to its cost-effectiveness and strong reduction capacity. However, its practical application is limited by poor stability, mobility, and antioxidant performance, as well as high reactivity that leads to side reactions and activity loss. To overcome these challenges, a poly(styrene)-encapsulated nZVI (PS-nZVI) core-shell structure was developed using dispersion polymerization.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, 518055, Shenzhen, China.
This work evaluated the effect of zero-valent iron (ZVI) particle size (150 μm-100 nm) on the performance of food waste anaerobic digestion (AD) under various acid stress conditions. The results indicated that ZVI significantly improved the AD performance, ensuring successful CH production even under high acid stress. However, the extent of this promoting effect was highly dependent on the particle size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!