A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A weakly supervised method for named entity recognition of Chinese electronic medical records. | LitMetric

A weakly supervised method for named entity recognition of Chinese electronic medical records.

Med Biol Eng Comput

College of Computer Science and Technology, Zhejiang University, Zhejiang Province, Hangzhou, 310027, China.

Published: October 2023

AI Article Synopsis

  • The Chinese medical natural language processing field struggles with training accurate entity recognition models due to limited high-quality labeled data.
  • To address this, researchers propose a joint training model called MCBERT-GCN-CRF, along with a 5-step framework named CM-NER, which improves recall and accuracy by reducing noise from weakly labeled data.
  • Their approach outperforms traditional models and achieved an F1 score of 86.29% on the CCKS-2019 dataset, showcasing the potential of using unlabeled data for better named entity recognition in healthcare.

Article Abstract

The field of Chinese medical natural language processing faces a significant challenge in training accurate entity recognition models due to the limited availability of high-quality labeled data. In response, we propose a joint training model, MCBERT-GCN-CRF, which achieves high performance in identifying medical-related entities in Chinese electronic medical records. Additionally, we introduce CM-NER, a 5-step framework that effectively mitigates the effects of noise in weakly labeled data and establishes a principled connection between supervised and weakly supervised named entity recognition. We demonstrate significant improvements in recall rate and accuracy. Our approach outperforms traditional fully supervised pre-training models and other state-of-the-art methods by suppressing noise in weakly labeled data. Our proposed framework achieves an F1 score of 86.29% on the CCKS-2019 dataset, significantly higher than pre-trained model baselines ranging from 74.17 to 83.06%, and higher than the top-performing named entity recognition supervised learning models in the CCKS-2019 competition. Our results demonstrate the effectiveness of our proposed framework and highlight the potential of leveraging unlabeled data to train accurate models for named entity recognition in Chinese medical natural language processing. This research has significant implications for advancing natural language processing techniques in the medical domain and improving patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-02871-6DOI Listing

Publication Analysis

Top Keywords

entity recognition
20
named entity
16
natural language
12
language processing
12
labeled data
12
weakly supervised
8
recognition chinese
8
chinese electronic
8
electronic medical
8
medical records
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: