Advancing sewage surveillance at mass gathering events for reducing transmission of antimicrobial resistant bacterial pathogens.

Travel Med Infect Dis

Department of Infection, Division of Infection and Immunity, University College London, UK; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK. Electronic address:

Published: November 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tmaid.2023.102619DOI Listing

Publication Analysis

Top Keywords

advancing sewage
4
sewage surveillance
4
surveillance mass
4
mass gathering
4
gathering events
4
events reducing
4
reducing transmission
4
transmission antimicrobial
4
antimicrobial resistant
4
resistant bacterial
4

Similar Publications

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.

View Article and Find Full Text PDF

Impact of operating mode variability on pollutant removal and microbial dynamics in a stacked hybrid constructed wetland: Implications for performance optimization.

Chemosphere

January 2025

International Science & Technology Cooperation Centre for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

This study innovatively developed a stacked hybrid constructed wetland, integrating the advantages of both free-water surface and subsurface flow constructed wetlands for enhanced treatment of sewage plant effluent. The effects of three different operation modes-Anoxic subsurface flow, Oxic subsurface flow, and Oxic subsurface flow with step-feeding-on sewage plant effluent treatment were thoroughly examined. Results indicated that all three modes exhibited excellent pollutant removal capabilities.

View Article and Find Full Text PDF

Effects of sewage sludge ash as a recycled phosphorus source on the soil microbiome.

Curr Opin Biotechnol

January 2025

Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. Electronic address:

Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective.

View Article and Find Full Text PDF

Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules.

J Hazard Mater

January 2025

Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:

The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!