Identified through forward genetics, spe-9 was the first gene to be identified in C. elegans as necessary for fertilization. Since then, genetic screens in C. elegans have led to the identification of nine additional sperm genes necessary for fertilization (including spe-51 reported by Mei et al. and the spe-36 gene reported here). This includes spe-45, which encodes an immunoglobulin-containing protein similar to the mammalian protein IZUMO1, and spe-42 and spe-49, which are homologous to vertebrate DCST2 and DCST1, respectively. Mutations in any one of these genes result in healthy adult animals that are sterile. Sperm from these mutants have normal morphology, migrate to and maintain their position at the site of fertilization in the reproductive tract, and make contact with eggs but fail to fertilize the eggs. This same phenotype is observed in mammals lacking Izumo1, Spaca6, Tmem95, Sof1, FIMP, or Dcst1 and Dcst2. Here we report the discovery of SPE-36 as a sperm-derived secreted protein that is necessary for fertilization. Mutations in the Caenorhabditis elegans spe-36 gene result in a sperm-specific fertilization defect. Sperm from spe-36 mutants look phenotypically normal, are motile, and can migrate to the site of fertilization. However, sperm that do not produce SPE-36 protein cannot fertilize. Surprisingly, spe-36 encodes a secreted EGF-motif-containing protein that functions cell autonomously. The genetic requirement for secreted sperm-derived proteins for fertilization sheds new light on the complex nature of fertilization and represents a paradigm-shifting discovery in the molecular understanding of fertilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529607 | PMC |
http://dx.doi.org/10.1016/j.cub.2023.06.051 | DOI Listing |
Domest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Plant Protection, IPB University, Bogor, Indonesia.
Smallholder farmers produce over 40% of global palm oil, the world's most traded and controversial vegetable oil. Awareness of the effects of palm oil production on ecosystems and human communities has increased drastically in recent years, with ever louder calls for the private and public sector to develop programs to support sustainable cultivation by smallholder farmers. To effectively influence smallholder practices and ensure positive social outcomes, such schemes must consider the variety in perspectives of farmers and align with their priorities.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture, Guizhou University, Guiyang, China.
The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.
View Article and Find Full Text PDFBoth male- and female-headed farm households grow maize in Ethiopia. However, little is known about the difference between male- and female-headed households in the adoption of high-yielding technologies for maize. This study examines the difference between male- and female-headed households in their decision to adopt and the intensity of adoption of improved maize technologies in Dawuro zone, Southwestern Ethiopia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!