Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131989 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!