In recent two decades, ultrasound has been broadly applied to the hydrometallurgical leaching process to recover valuable metals within raw materials, aiming to solve the shortcomings of the conventional leaching process, including relatively low leaching recovery, long leaching duration, high reagent usage, high energy consumption and so on. The present work focuses on a comprehensive overview of the ultrasound-enhanced leaching of various metals, such as common nonferrous and ferrous metals, rare metals, rare earth elements, and precious metals, from raw metal ores and secondary resources. Moreover, the enhanced leaching mechanisms by ultrasound are discussed in detail and summarized based on the improvement of leaching kinetics, enhancement of the mass transfer and diffusion of lixiviants, and promotion of the oxidative conversion of metals from insoluble to soluble states. Lastly, the challenges and outlooks of future research on the leaching recovery for valuable metals with the assistance of ultrasound irradiation are proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371852PMC
http://dx.doi.org/10.1016/j.ultsonch.2023.106525DOI Listing

Publication Analysis

Top Keywords

leaching recovery
12
valuable metals
12
leaching
9
ultrasound-enhanced leaching
8
recovery valuable
8
metals
8
leaching process
8
metals raw
8
metals rare
8
comprehensive review
4

Similar Publications

Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.

View Article and Find Full Text PDF

To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.

View Article and Find Full Text PDF

Phthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.

View Article and Find Full Text PDF

[Sorption and Transport of Antibiotics in Manured Upland Agricultural Soils].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Sorption and transport are important environmental behaviors of antibiotics in soils and can determine the fate of antibiotics in environments; however, limited relevant studies have been conducted on long-term manured soils. In this study, batch and repacked soil column experiments were conducted to examine the sorption and transport behavior of four veterinary antibiotics, including sulfamethazine (SMT), florfenicol (FFC), doxycycline (DOX), and enrofloxacin (ENR), in red soils, yellow soils, and calcareous soils with long-term amendment of chicken or pig manure collected in Zhejiang Province. The results showed that the sorption isothermal data of the four target antibiotics all conformed well to the linear and Freundlich models.

View Article and Find Full Text PDF

The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!