The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213549DOI Listing

Publication Analysis

Top Keywords

murine gbm
8
gbm resection
8
gbm cells
8
adsorbed lnc
8
lnc surface
8
gbm
6
lnc
6
hydrogel
5
glioblastoma-targeted local
4
local sustained
4

Similar Publications

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.

Neuromolecular Med

January 2025

Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.

Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated.

View Article and Find Full Text PDF

Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma.

Nat Commun

January 2025

The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.

View Article and Find Full Text PDF

Glioblastoma tumors remain a formidable challenge for immune-based treatments because of their molecular heterogeneity, poor immunogenicity, and growth in the largely isolated and immunosuppressive neural environment. As the tumor grows, GBM cells change the composition and architecture of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). We have previously described the unique expression of the ECM protein EFEMP1/fibulin-3 in GBM compared to normal brain and demonstrated that this secreted protein promotes the growth of the GBM stem cell (GSC) population.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!