Bacillus sp. is one of the best-studied plant growth-promoting rhizobacteria (PGPR). However, more detailed studies targeting its effect on the rhizosphere microbial community are required for improving management practices regarding its commercial application in the field. Our earlier study showed that PGPR Bacillus paralicheniformis 2R5 stimulated canola growth. Hence, this study aimed to assess the time-course impact of B. paralicheniformis 2R5 on bacterial and fungal community structure and diversity. The results showed that inoculation with B. paralicheniformis 2R5 initially significantly decreased the observed bacterial richness compared to the control, while after 44 days of treatment this alpha diversity metrics increased. A linear discriminant analysis effect size showed that B. paralicheniformis 2R5 altered the soil bacterial and fungal community structure by increasing the abundance of plants' beneficial microorganisms such as Nitrospira, Ramlibacter, Sphingomonas, Massilia, Terrimonas as well as Solicoccozyma, Schizothecium, Cyphellophora, Fusicolla, Humicola. B. paralicheniformis 2R5 seems to be a promising alternative to chemical pesticides and can be considered for practical application in the field. Its ability to alter the rhizosphere microbiome by increasing the diversity and composition of bacterial communities and increasing plants' beneficial groups of fungi, appears to be important in terms of improving canola development. However, further studies on these increased microbial taxa are necessary to confirm their function in promoting canola growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2023.127448DOI Listing

Publication Analysis

Top Keywords

paralicheniformis 2r5
24
bacterial fungal
12
bacillus paralicheniformis
8
2r5 bacterial
8
application field
8
canola growth
8
fungal community
8
community structure
8
plants' beneficial
8
paralicheniformis
6

Similar Publications

Chemical fertilization has a negative impact on the natural environment. Plant growth-promoting (PGP) rhizobacterial biofertilizers can be a safer alternative to synthetic agrochemicals. In this research, a culture-based method was used to assess the population size of rhizobacteria at the vegetative, flowering, and maturity stages of canola.

View Article and Find Full Text PDF

Bacillus sp. is one of the best-studied plant growth-promoting rhizobacteria (PGPR). However, more detailed studies targeting its effect on the rhizosphere microbial community are required for improving management practices regarding its commercial application in the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!