Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection in the United States and the world. This pathogen can cause health problems ranging from trachoma (blindness) to damage of the fallopian tubes or ectopic pregnancy, which can be life-threatening if not treated properly. To this day, there is no chlamydia-specific drug on the market. Previously, we reported the activity and basic structure-activity relationships (SAR) of sulfonylpyridine molecules that possess antichlamydial action. Based on those results, we prepared a new series of derivatives. Our data indicate the new analogs can halt the growth of C. trachomatis. The lead compound, 22, was more active than our previous molecules and did not affect the growth of S. aureus and E. coli, suggesting bacterial selectivity. We performed docking studies on the presumed target, the cylindrical protease of Chlamydia. The in-silico studies partially explained the in vitro biological result as well as predicted a possible binding pose in the binding pocket. The top compound displayed a good cytotoxicity profile towards mammalian cell lines and was stable in both serum and stimulated gastric fluid. The presented data suggests the sulfonylpyridines are promising and selective anti-chlamydial compounds that merit further structural optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2023.117401 | DOI Listing |
ACS Nano
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.
Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
University of Toronto Lupus Clinic, Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, Toronto, ON, Canada. Electronic address:
Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:
Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers.
View Article and Find Full Text PDFAdv Clin Chem
January 2025
School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea. Electronic address:
The advent of multiomics has ushered in a new era of cancer research characterized by integrated genomic, transcriptomic and proteomic analysis to unravel the complexities of cancer biology and facilitate the discovery of novel biomarkers. This chapter provides a comprehensive overview of the concept of multiomics, detailing the significant advances in the underlying technologies and their contributions to our understanding of cancer. It delves into the evolution of genomics and transcriptomics, breakthroughs in proteomics, and overarching progress in multiomic methodologies, highlighting their collective impact on cancer biomarker discovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!