Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish.

Cell Rep

Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Published: July 2023

Tissue-resident macrophages (TRMs) and dendritic cells (DCs) are highly heterogeneous and essential for immunity, tissue regeneration, and homeostasis maintenance. Here, we comprehensively profile the heterogeneity of TRMs and DCs across adult zebrafish organs via single-cell RNA sequencing. We identify two macrophage subsets: pro-inflammatory macrophages with potent phagocytosis signatures and pro-remodeling macrophages with tissue regeneration signatures in barrier tissues, liver, and heart. In parallel, one conventional dendritic cell (cDC) population with prominent antigen presentation capacity and plasmacytoid dendritic cells (pDCs) featured by anti-virus properties are also observed in these organs. Remarkably, in addition to a single macrophage/microglia population with potent phagocytosis capacity, a pDC population and two distinct cDC populations are identified in the brain. Finally, we generate specific reporter lines for in vivo tracking of macrophage and DC subsets. Our study depicts the landscape of TRMs and DCs and creates valuable tools for in-depth study of these cells in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.112793DOI Listing

Publication Analysis

Top Keywords

dendritic cell
8
dendritic cells
8
tissue regeneration
8
trms dcs
8
macrophage subsets
8
potent phagocytosis
8
cross-organ single-cell
4
single-cell transcriptome
4
transcriptome profiling
4
profiling reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!