Sewage sludge pretreatment: current status and future prospects.

Environ Sci Pollut Res Int

Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.

Published: August 2023

Sewage sludge is regarded by wastewater treatment plants as problematic, from a financial and managerial point of view. Thus, a variety of disposal routes are used, but the most popular is methane fermentation. The proportion of macromolecular compounds in sewage sludges varies, and substrates treated in methane fermentation provide different amounts of biogas with various quality and quantity. Depending on the equipment and financial capabilities for methane fermentation, different methods of sewage sludge pretreatment are available. This review presents the challenges associated with the recalcitrant structure of sewage sludge and the presence of process inhibitors. We also examined the diverse methods of sewage sludge pretreatment that increase methane yield. Moreover, in the field of biological sewage sludge treatment, three future study propositions are proposed: improved pretreatment of sewage sludge using biological methods, assess the changes in microbial consortia caused with pretreatment methods, and verification of microbial impact on biomass degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412499PMC
http://dx.doi.org/10.1007/s11356-023-28613-7DOI Listing

Publication Analysis

Top Keywords

sewage sludge
28
sludge pretreatment
12
methane fermentation
12
sewage
8
methods sewage
8
sludge
6
pretreatment
5
pretreatment current
4
current status
4
status future
4

Similar Publications

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Design of S-Scheme CuInS/CeO Heterojunction for Enhanced Photocatalytic Degradation of Pharmaceuticals in Wastewater.

Langmuir

January 2025

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

The release of common medications and illegal drugs into the environment could be potentially harmful to the ecosystem and hamper the behavior and growth of plants and animals. These pollutants gain access to water through sewage and factory discharges and have been found to exceed safety limits in water bodies. Therefore, there is an urgent need for improved wastewater purification systems.

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Polylactic acid microplastics before and after aging induced neurotoxicity in zebrafish by disrupting the microbiota-gut-brain axis.

J Hazard Mater

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!