Are anaerobic fungi crucial hidden players of microbiomes in anoxic environment?

Crit Rev Microbiol

Department of Biotechnology, University of Science and Technology, Foy's Lake, Chittagong, Bangladesh.

Published: September 2024

Anaerobic fungi are known to migrate and establish a 3D network of biofilms (microbiomes) and live invisible in the rumen and terrestrial subsurface, deep-sea - marine, and anoxic environment. They deserve our attention to understand anoxic fungal ecology and functions and develop new products and solutions. Such fungi activate unique genes to produce various polysaccharidases deemed essential for degrading plants' lignocellulosic materials. Nutrient release, recycling, and physical support by anaerobic fungi are crucial for microbiome formation. Multiple reports point to the ability of strictly anaerobic and facultative fungi to adapt and live in anoxic subsurface. Deep-sea sediments and natural anoxic methane-emitting salty waters of sulfidic springs offer suitable habitats for developing prokaryotic-fungal microbiomes. Researchers found a billion-year-old fossil of the fungus-prokaryotic sulfate-reducing consortium buried in deep-sea biospheres. Fungal spores' ability to migrate, even after germination, through sandy layers demonstrates their potential to move up and down porous geological layers or rock fissures. Selective fungal affinity to specific wood in wood chip arrays might help differentiate viable anaerobic fungi from an anoxic environment for their rapid collection and investigation. New collection methods, cultivation, gene expression, and drug and enzyme activity analyses can boost anaerobic fungal research.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1040841X.2023.2224425DOI Listing

Publication Analysis

Top Keywords

anaerobic fungi
16
fungi crucial
8
subsurface deep-sea
8
anoxic environment
8
anaerobic
6
anoxic
6
fungi
5
crucial hidden
4
hidden players
4
players microbiomes
4

Similar Publications

Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.

View Article and Find Full Text PDF

Unveiling the degradation mechanism of 3,5-dichloroaniline: Activated sludge acclimation, strain isolation and gene cloning.

J Hazard Mater

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China. Electronic address:

3,5-Dichloroaniline (3,5-DCA) is extensively used in synthesizing dicarboximide fungicides, medical compounds and dyes. Due to its widespread use in agriculture and industry, 3,5-DCA is often detected in groundwater, wastewater, sediments and soil, posing great risk to animals and humans. However, the genes and enzymes involved in 3,5-DCA degradation remain unidentified.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!