Attaining compact energy storage under extreme temperature conditions is of paramount importance in the development of advanced dielectric materials. The polymer composite approach has proved effective towards this goal, and addressing the correlation between filler distribution and electrical properties is foremost in designing composite dielectrics, especially in multifiller systems. Here, the design of a bi-gradient polymer composite dielectric using an integrated framework based on the phase field model is reported. This framework can predict the charge-inhibiting behavior of composite dielectrics, which is a key factor impacting the high-temperature capacitive performance but unfortunately is ignored in conventional phase field models. It is found that due to the traps provided by the functional organic fillers, more carriers are trapped near the electrodes and weaken the electric field, thus significantly suppressing the breakdown initialization process. An interpenetrating gradient structure is designed rationally and synthesized experimentally, which exhibits concurrent high energy density (5.51 J cm ) and high charge-discharge efficiency (90%) up to 200 °C. This work provides a strategy to predict the high-temperature energy storage performance of polymer composites containing charge-inhibiting components and helps broaden the scope of data-driven materials design based on phase-field modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502658 | PMC |
http://dx.doi.org/10.1002/advs.202302949 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
The aqueous zinc metal battery holds great potential for large-scale energy storage due to its safety, low cost, and high theoretical capacity. However, challenges such as corrosion and dendritic growth necessitate controlled zinc deposition. This study employs epitaxy to achieve large-area, dense, and ultraflat zinc plating on textured copper foil.
View Article and Find Full Text PDFNano Lett
January 2025
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.
Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
College of Agriculture, Ibaraki University, Inashiki, Japan.
Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!