A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533597 | PMC |
http://dx.doi.org/10.1007/s12035-023-03479-5 | DOI Listing |
JAMA Netw Open
January 2025
Laboratory of NeuroImaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.
Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.
Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).
Braz J Psychiatry
January 2025
Research Center in Spirituality and Health (NUPES), School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil.
Objective: There has been a call for neuroscientific studies of spiritual experiences due to their global prevalence, significant impact, and importance for understanding the mind-brain problem. Mediumship is a spiritual experience where individuals claim to communicate with or be influenced by deceased persons or non-material entities. We assessed whether mediums possess specific genetic alterations.
View Article and Find Full Text PDFGeroscience
January 2025
Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.
View Article and Find Full Text PDFDiabetes Metab Res Rev
January 2025
Rush Alzheimer's Disease Centre, Rush University Medical Center, Chicago, Illinois, USA.
Diabetes increases the risk of dementia, and insulin resistance (IR) has emerged as a potential unifying feature. Here, we review published findings over the past 2 decades on the relation of diabetes and IR to brain health, including those related to cognition and neuropathology, in the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study (ROS/MAP/MARS), three harmonised cohort studies of ageing and dementia at the Rush Alzheimer's Disease Center (RADC). A wide range of participant data, including information on medical conditions such as diabetes and neuropsychological tests, as well as other clinical and laboratory-based data collected annually.
View Article and Find Full Text PDFCureus
December 2024
Division of Internal Medicine, Miyagi Central Hospital, Sendai, JPN.
Several neurological conditions, including transient global amnesia (TGA), may present an isolated sudden-onset temporary amnestic symptom. TGA is a benign, self-remitting neurological condition associated with hippocampal dysfunction. Meanwhile, certain other neurological conditions, such as cerebral ischemic stroke and hippocampal epilepsy, require appropriate therapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!