This paper presents a novel machine learning framework for detecting PxAF, a pathological characteristic of electrocardiogram (ECG) that can lead to fatal conditions such as heart attack. To enhance the learning process, the framework involves a generative adversarial network (GAN) along with a neural architecture search (NAS) in the data preparation and classifier optimization phases. The GAN is innovatively invoked to overcome the class imbalance of the training data by producing the synthetic ECG for PxAF class in a certified manner. The effect of the certified GAN is statistically validated. Instead of using a general-purpose classifier, the NAS automatically designs a highly accurate convolutional neural network architecture customized for the PxAF classification task. Experimental results show that the accuracy of the proposed framework exhibits a high value of 99.0% which not only enhances state-of-the-art by up to 5.1%, but also improves the classification performance of the two widely-accepted baseline methods, ResNet-18, and Auto-Sklearn, by [Formula: see text] and [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349064PMC
http://dx.doi.org/10.1038/s41598-023-38541-8DOI Listing

Publication Analysis

Top Keywords

neural architecture
8
architecture search
8
[formula text]
8
accurate detection
4
detection paroxysmal
4
paroxysmal atrial
4
atrial fibrillation
4
fibrillation certified-gan
4
certified-gan neural
4
search paper
4

Similar Publications

Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions.

View Article and Find Full Text PDF

A generative model of the connectome with dynamic axon growth.

Netw Neurosci

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data.

View Article and Find Full Text PDF

This study aims to review the existing literature on cerebral cortical changes in craniosynostosis during the months of August and September 2023. It focuses on alterations occurring in cases of both syndromic and non-syndromic forms of the disease. In particular, variations in volume, size, and structure (e.

View Article and Find Full Text PDF

Coronary artery disease (CAD) remains a leading global cause of morbidity and mortality, underscoring the need for effective cardiovascular risk stratification and preventive strategies. Coronary artery calcium (CAC) scoring, traditionally performed using electrocardiogram (ECG)-gated cardiac computed tomography (CT) scans, has been widely validated as a robust tool for assessing cardiovascular risk. However, its application has been largely limited to high-risk populations due to the costs, technical requirements, and limited accessibility of cardiac CT scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!