Orthorhombic CaCO is a recently discovered orthocarbonate whose high-pressure physical properties are critical for understanding the deep carbon cycle. Here, we study the structure, elastic and seismic properties of CaCO-Pnma at 20-140 GPa using first-principles calculations, and compare them with the results of CaCO polymorphs. The results show that the structural parameters of CaCO-Pnma are in good agreement with the experimental results. It could be the potential host of carbon in the Earth's mantle subduction slab, and its low wave velocity and small anisotropy may be the reason why it cannot be detected in seismic observation. The thermodynamic properties of CaCO-Pnma at high temperature and high pressure are obtained using the quasi-harmonic approximation method. This study is helpful in understanding the behavior of Ca-carbonate in the Earth's lower mantle conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349146 | PMC |
http://dx.doi.org/10.1038/s41598-023-38604-w | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.
Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFChemSusChem
January 2025
Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA.
Water-lean absorbents are regarded as a new generation of post-combustion CO2 capture technology that could significantly relieve those drawbacks posed by traditional aqueous alkanolamines. However, the exponential increase in viscosity during CO2 absorption remains an urgent issue that needs to be resolved before their practical deployment. In this work, novel water-lean amines based on biomass glycerol have been devised as single-component CO2 absorbents with low viscosity (79~110 cP at 25 oC, 29~39 cP at 40 oC) under high capacity (12~18 wt% at 25 oC, 10~17 wt% at 40 oC).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MOE Key Laboratory of Mesoscopic Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China.
Two-phase reactions involving microdroplets have gained significant attention in recent years due to their unique ability to catalyze and accelerate reactions that typically do not occur under standard conditions by leveraging chemical and physical effects at the micrometer-scale interface. In this work we have innovatively developed a scaled-up microdroplet reactor for the efficient resource utilization of CO. The reaction liquid is sprayed in the form of mist ( < 20 μm), facilitating complete contact and reaction with gaseous CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!