Three organic monolayers coatings were developed and tested for their effectiveness to increase cleaning efficiency of attached microscale particles by air flows. The experiments were performed using silica substrates coated with these organic thin films and subsequently exposed to stainless-steel and silica microparticles as a model of contamination. Laser-induced-damage tests confirmed that the coatings do not affect the laser-induced-damage threshold values. The particle exposure results suggest that although the accumulation of particles is not significantly affected under the experimental conditions used in this work, the coated substrates exhibit significantly improved cleaning efficiency with a gas flow. A size-distribution analysis was conducted to study the adsorption and cleaning efficiency of particles of different sizes. It was observed that larger size (> 5-μm) particles can be removed from coated substrates with almost 100% efficiency. It was also determined that the coatings improve the cleaning efficiency of the smaller particles (≤ 5 μm) by 17% to 30% for the stainless steel metal and 19% to 38% for the silica particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349057PMC
http://dx.doi.org/10.1038/s41598-023-37813-7DOI Listing

Publication Analysis

Top Keywords

cleaning efficiency
16
organic thin
8
thin films
8
coated substrates
8
efficiency
5
particles
5
monolayer organic
4
films particle-contamination-resistant
4
coatings
4
particle-contamination-resistant coatings
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.

View Article and Find Full Text PDF

To improve the inadequate reliability of the grid that has led to a worsening energy crisis and environmental issues, comprehensive research on new clean renewable energy and efficient, cost-effective, and eco-friendly energy management technologies is essential. This requires the creation of advanced energy management systems to enhance system reliability and optimize efficiency. Demand-side energy management systems are a superior solution for multiple reasons.

View Article and Find Full Text PDF

Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!