NLRP3 inflammasome is a multiprotein complex expressed in a variety of cells to stimulate the production of inflammatory factors. Activation of NLRP3 inflammasome depends on a complex regulatory mechanism, and its pro-inflammatory function plays an important role in pancreatic diseases. In this literature review, we summarize the activation mechanism of NLRP3 and analyze its role in each of the four typical pancreatic diseases. Through this article, we provide a relatively comprehensive summary to the researchers in this field, and provide some targeted therapy routes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349060 | PMC |
http://dx.doi.org/10.1038/s41420-023-01550-7 | DOI Listing |
Immunobiology
January 2025
Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt. Electronic address:
Background: Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Rehabilitation Medicine, Department of Sports Medicine, Institute of Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
[This retracts the article DOI: 10.21037/atm-22-5443.].
View Article and Find Full Text PDFImmunometabolism (Cobham)
January 2025
Institute for Systems Biology, Seattle, WA, USA.
The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.
Background And Purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.
Experimental Approach: A POCD mouse model was established and intraperitoneally injected with Dex.
Nat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!