NLRP3 inflammasome is a multiprotein complex expressed in a variety of cells to stimulate the production of inflammatory factors. Activation of NLRP3 inflammasome depends on a complex regulatory mechanism, and its pro-inflammatory function plays an important role in pancreatic diseases. In this literature review, we summarize the activation mechanism of NLRP3 and analyze its role in each of the four typical pancreatic diseases. Through this article, we provide a relatively comprehensive summary to the researchers in this field, and provide some targeted therapy routes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349060PMC
http://dx.doi.org/10.1038/s41420-023-01550-7DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
pancreatic diseases
8
trigger pancreatic
4
pancreatic disease
4
nlrp3
4
disease nlrp3
4
inflammasome nlrp3
4
inflammasome multiprotein
4
multiprotein complex
4
complex expressed
4

Similar Publications

Background: Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases.

View Article and Find Full Text PDF

The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.

View Article and Find Full Text PDF

Background And Purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.

Experimental Approach: A POCD mouse model was established and intraperitoneally injected with Dex.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!