Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349100PMC
http://dx.doi.org/10.1038/s41467-023-39672-2DOI Listing

Publication Analysis

Top Keywords

eye morphogenesis
12
mammalian eye
8
aerobic glycolysis
8
retinal progenitors
8
retinal
5
lactate-dependent transcriptional
4
transcriptional regulation
4
regulation controls
4
controls mammalian
4
eye
4

Similar Publications

Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities.

Cell Mol Neurobiol

December 2024

Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.

Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Stimulus-invariant aspects of the retinal code drive discriminability of natural scenes.

Proc Natl Acad Sci U S A

December 2024

Committee on Computational Neuroscience, Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637.

Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells (RGCs), less is known about how populations form both flexible and reliable encoding in natural moving scenes.

View Article and Find Full Text PDF

Effects of FGFR2b-ligand signaling on pancreatic branching morphogenesis and postnatal islet function.

J Mol Histol

December 2024

National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.

Pancreatic development is a complex process vital for maintaining metabolic balance, requiring intricate interactions among different cell types and signaling pathways. Fibroblast growth factor receptors 2b (FGFR2b)-ligands signaling from adjacent mesenchymal cells is crucial in initiating pancreatic development and differentiating exocrine and endocrine cells through a paracrine mechanism. However, the precise critical time window that affects pancreatic development remains unclear.

View Article and Find Full Text PDF

Axon guidance in central nervous system regeneration.

Dev Cell

December 2024

Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA. Electronic address:

Critical molecular pathways promote central nervous system (CNS) axon regeneration, but can axons be guided to their correct targets in adulthood? In this issue of Developmental Cell, Delpech et al. show that axonal guidance cues in the CNS can be manipulated to enhance anatomic and functional recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!