Identifiability of causal effects in test-negative design studies.

Int J Epidemiol

Department of Tumour Immunology, Radboud University Medical Center, Nijmegen, The Netherlands.

Published: December 2023

Causal directed acyclic graphs (DAGs) are often used to select variables in a regression model to identify causal effects. Outcome-based sampling studies, such as the 'test-negative design' used to assess vaccine effectiveness, present unique challenges that are not addressed by the common back-door criterion. Here we discuss intuitive, graphical approaches to explain why the common back-door criterion cannot be used for identification of population average causal effects with outcome-based sampling studies. We also describe graphical rules that can be used instead in outcome-based sampling studies when the objective is limited to determining if the causal odds ratio is identifiable, and illustrate recent changes to the free online software Dagitty which incorporate these principles.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyad102DOI Listing

Publication Analysis

Top Keywords

causal effects
12
outcome-based sampling
12
sampling studies
12
effects outcome-based
8
common back-door
8
back-door criterion
8
identifiability causal
4
effects test-negative
4
test-negative design
4
studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!