Although Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress. Gene ontology (GO) analysis enriched 24 and 26 terms in Y15 and Y1540 respectively, including 23 common terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed 27 and 28 significant pathways in Y15 and Y1540 respectively, with 19 common pathways. Different responses to Cd stress between cultivars were not only reflected in differently enriched GO terms and KEGG pathways but also in different DEGs of 23 common GO terms and significant sequences represented by p-values of 19 common KEGG pathways. Both cultivars resist Cd through common processes with different weights; hence glutathione metabolism, mineral absorption, biosynthesis of secondary metabolites, and degradation of aromatic compounds could be playing a more important role in Y1540, whereas ribosome biogenesis in eukaryotes, mismatch repair, aminoacyl-tRNA biosynthesis, and the cell cycle maybe playing a more important role in Y15. Weighted gene co-expression network analysis (WGCNA) showed that five and three modules were clustered in Y15 and Y1540, respectively, with yellow and brown modules in Y15 and brown modules in Y1540 being significantly related to Cd stress. Further analysis showed that most of hub genes in Y15 were related to signal transduction or transcription factors, while most of hub genes in Y1540 were related to binding, metabolic, and secondary metabolic processes, which demonstrated their different response patterns at transcriptomic level to Cd stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139489 | DOI Listing |
Chemosphere
October 2023
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. Electronic address:
Although Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!