Background: Previous studies have suggested an association between non-optimum ambient temperature and decreased semen quality. However, the effect of exposure to heat waves on semen quality remains unclear.
Methods: Volunteers who intended to donate sperm in Guangdong provincial human sperm bank enrolled. Heat waves were defined by temperature threshold and duration, with a total of 9 definitions were employed, specifying daily mean temperature exceeding the 85th, 90th, or 95th percentile for at least 2, 3, or 4 consecutive days. Residential exposure to heat waves during 0-90 days before ejaculation was evaluated using a validated gridded dataset on ambient temperature. Association and potential windows of susceptibility were evaluated and identified using linear mixed models and distributed lag non-linear models.
Results: A total of 2183 sperm donation volunteers underwent 8632 semen analyses from 2018 to 2019. Exposure to heat wave defined as daily mean temperature exceeding the 95th percentile for at least 4 consecutive days (P95-D4) was significantly associated with a 0.11 (95% confidence interval [CI]: 0.03, 0.18) ml, 3.36 (1.35, 5.38) × 10/ml, 16.93 (7.95, 25.91) × 10, and 2.11% (1.4%, 2.83%) reduction in semen volume, sperm concentration, total sperm number, and normal forms, respectively; whereas exposure to heat wave defined as P90-D4 was significantly associated with a 1.98% (1.47%, 2.48%) and 2.08% (1.57%, 2.58%) reduction in total motility and progressive motility, respectively. Sperm count and morphology were susceptible to heat wave exposure during the early stage of spermatogenesis, while sperm motility was susceptible to exposure during the late stage.
Conclusion: Heat wave exposure was significantly associated with a reduction in semen quality. The windows of susceptibility during 0-90 days before ejaculation varied across sperm count, motility, and morphology. Our findings suggest that reducing heat wave exposure before ejaculation may benefit sperm donation volunteers and those attempting to conceive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!