Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrochars formed by hydrothermal carbonization of hickory wood, bamboo, and wheat straw at 200 °C were modified by potassium permanganate (KMnO) for the sorption of Pb(II), Cd(II), and Cu(II). The wheat straw hydrochar (WSHyC) modified with 0.2 M KMnO resulted in the most promising adsorbent (WSHyC-0.2KMnO). Characterization of WSHyC and WSHyC-0.2KMnO revealed that the modified hydrochar features large specific surface area, rich of surface oxygenic functional groups (OCFG), and a significant amount of MnOx micro-particles. Batch adsorption experiments indicated that the adsorption rate by WSHyC-0.2KMnO was faster than for WSHyC, attaining equilibrium after around 5 h. The optimum adsorption capacity (Langmuir) of Pb(II), Cd(II), and Cu(II) by WSHyC-0.2KMnO was 189.24, 29.06 and 32.68 mg/g, respectively, 12 ∼ 17 times greater than by WSHyC. The significantly enhanced heavy metal adsorption can be attributable to the increased OCFG and MnOx microparticles on the surface, thereby promoting ion exchange, electrostatic interactions, and complexation mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558135 | PMC |
http://dx.doi.org/10.1016/j.biortech.2023.129482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!