Determining the most recent common ancestor in a finite linear habitat with asymmetric dispersal.

Theor Popul Biol

Department of Earth Sciences, and the Institute of Earth, Oceans, and Space, University of New Hampshire, Durham NH 03824, United States of America. Electronic address:

Published: October 2023

Many species that are birthed in one location and become reproductive in another location can be treated as if in a one-dimensional habitat where dispersal is biased downstream. One example of such is planktonic larvae that disperse in coastal oceans, rivers, and streams. In these habitats, the dynamics of the dispersal are dominated by the movement of offspring in one direction and the distance between parents and offspring in the other direction does not matter. We study an idealized species with non-overlapping generations in a finite linear habitat that has no larval input from outside of the habitat and is therefore isolated from other populations. The most non-realistic assumption that we make is that there are non-overlapping generations, and this is an assumption to be considered in future work. We find that a biased dispersal in the habitat reduces the average time to the most recent common ancestor and causes the average location of the most recent common ancestor to move from the center of the habitat to the upstream edge of the habitat. Due to the decrease in the time to the most recent common ancestor and the shift of the average location to the upstream edge, the effective population size (N) no longer depends on the census size and is dependent on the dispersal statistics. We determine the average time and location of the most recent common ancestor as a function of the larval dispersal statistics. The location of the most recent common ancestor becomes independent of the length of the habitat and is only dependent on the location of the upstream edge and the larval dispersal statistics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tpb.2023.06.003DOI Listing

Publication Analysis

Top Keywords

common ancestor
24
location common
12
upstream edge
12
dispersal statistics
12
finite linear
8
habitat
8
linear habitat
8
offspring direction
8
non-overlapping generations
8
average time
8

Similar Publications

The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.

View Article and Find Full Text PDF

Unveiling an ancient whole-genome duplication event in Stentor, the model unicellular eukaryotes.

Sci China Life Sci

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.

Whole-genome duplication (WGD) events are widespread across eukaryotes and have played a significant role in moulding the genetic architectures of diverse organisms. In the present study, the newly sequenced genome of a giant ciliated protist, Stentor roeselii, provides an opportunity for the analysis of the collinearity and retention of reciprocal best-hit genes between two Stentor species. As a main result, we have unveiled a previously undetected ancient WGD event shaping the genome of its congener, Stentor coeruleus, a model protist used in cytological and evolutionary studies.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of largemouth bronze gudgeon (Coreius guichenoti).

Sci Data

January 2025

Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.

Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques.

View Article and Find Full Text PDF

It is under debate whether intersubjectivity-the capacity to experience a sense of togetherness around an action-is unique to humans. In humans, heavy tickling-a repeated body probing play that causes an automatic response including uncontrollable laughter (gargalesis)-has been linked to the emergence of intersubjectivity as it is aimed at making others laugh (self-generated responses are inhibited), it is often asymmetrical (older to younger subjects), and it elicits agent-dependent responses (pleasant/unpleasant depending on social bond). Intraspecific tickling and the related gargalesis response have been reported in humans, chimpanzees, and anecdotally in other great apes, potentially setting the line between hominids and other anthropoids.

View Article and Find Full Text PDF

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!