Many species that are birthed in one location and become reproductive in another location can be treated as if in a one-dimensional habitat where dispersal is biased downstream. One example of such is planktonic larvae that disperse in coastal oceans, rivers, and streams. In these habitats, the dynamics of the dispersal are dominated by the movement of offspring in one direction and the distance between parents and offspring in the other direction does not matter. We study an idealized species with non-overlapping generations in a finite linear habitat that has no larval input from outside of the habitat and is therefore isolated from other populations. The most non-realistic assumption that we make is that there are non-overlapping generations, and this is an assumption to be considered in future work. We find that a biased dispersal in the habitat reduces the average time to the most recent common ancestor and causes the average location of the most recent common ancestor to move from the center of the habitat to the upstream edge of the habitat. Due to the decrease in the time to the most recent common ancestor and the shift of the average location to the upstream edge, the effective population size (N) no longer depends on the census size and is dependent on the dispersal statistics. We determine the average time and location of the most recent common ancestor as a function of the larval dispersal statistics. The location of the most recent common ancestor becomes independent of the length of the habitat and is only dependent on the location of the upstream edge and the larval dispersal statistics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tpb.2023.06.003 | DOI Listing |
J Anat
January 2025
Graduate School of Medicine, Juntendo University, Tokyo, Japan.
The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
Whole-genome duplication (WGD) events are widespread across eukaryotes and have played a significant role in moulding the genetic architectures of diverse organisms. In the present study, the newly sequenced genome of a giant ciliated protist, Stentor roeselii, provides an opportunity for the analysis of the collinearity and retention of reciprocal best-hit genes between two Stentor species. As a main result, we have unveiled a previously undetected ancient WGD event shaping the genome of its congener, Stentor coeruleus, a model protist used in cytological and evolutionary studies.
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques.
View Article and Find Full Text PDFAm J Primatol
January 2025
DBIOS Department of Life Sciences and Systems Biology, University of Torino (DBIOS), Torino, Italy.
It is under debate whether intersubjectivity-the capacity to experience a sense of togetherness around an action-is unique to humans. In humans, heavy tickling-a repeated body probing play that causes an automatic response including uncontrollable laughter (gargalesis)-has been linked to the emergence of intersubjectivity as it is aimed at making others laugh (self-generated responses are inhibited), it is often asymmetrical (older to younger subjects), and it elicits agent-dependent responses (pleasant/unpleasant depending on social bond). Intraspecific tickling and the related gargalesis response have been reported in humans, chimpanzees, and anecdotally in other great apes, potentially setting the line between hominids and other anthropoids.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!