Mitochondrial functions play a crucial role in determining the metabolic and thermogenic status of brown adipocytes. Increasing evidence reveals that the mitochondrial oxidative phosphorylation (OXPHOS) system plays an important role in brown adipogenesis, but the mechanistic insights are limited. Herein, we explored the potential metabolic mechanisms leading to OXPHOS regulation of brown adipogenesis in pharmacological and genetic models of mitochondrial respiratory complex I deficiency. OXPHOS deficiency inhibits brown adipogenesis through disruption of the brown adipogenic transcription circuit without affecting ATP levels. Neither blockage of calcium signaling nor antioxidant treatment can rescue the suppressed brown adipogenesis. Metabolomics analysis revealed a decrease in levels of tricarboxylic acid cycle intermediates and heme. Heme supplementation specifically enhances respiratory complex I activity without affecting complex II and partially reverses the inhibited brown adipogenesis by OXPHOS deficiency. Moreover, the regulation of brown adipogenesis by the OXPHOS-heme axis may be due to the suppressed histone methylation status by increasing histone demethylation. In summary, our findings identified a heme-sensing retrograde signaling pathway that connects mitochondrial OXPHOS to the regulation of brown adipocyte differentiation and metabolic functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mito.2023.07.004 | DOI Listing |
Life Sci
January 2025
Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France. Electronic address:
Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.
Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.
Biomed J
January 2025
Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:
Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea. Electronic address:
FXR, encoded by Nh1r4, is a nuclear receptor crucial in regulating bile acid, lipid, and glucose metabolism. Prior research has indicated that activating FXR in the liver and small intestine may offer protection against obesity and metabolic diseases. This study demonstrates the essential role of the FXR-ApoC2 pathway in promoting the browning of white adipose tissue (WAT).
View Article and Find Full Text PDFFASEB Bioadv
January 2025
Department of Chemistry, Graduate School of Science Chiba University Chiba Japan.
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!