Understanding the circuit mechanisms of the visual code for natural scenes is a central goal of sensory neuroscience. We show that a three-layer network model predicts retinal natural scene responses with an accuracy nearing experimental limits. The model's internal structure is interpretable, as interneurons recorded separately and not modeled directly are highly correlated with model interneurons. Models fitted only to natural scenes reproduce a diverse set of phenomena related to motion encoding, adaptation, and predictive coding, establishing their ethological relevance to natural visual computation. A new approach decomposes the computations of model ganglion cells into the contributions of model interneurons, allowing automatic generation of new hypotheses for how interneurons with different spatiotemporal responses are combined to generate retinal computations, including predictive phenomena currently lacking an explanation. Our results demonstrate a unified and general approach to study the circuit mechanisms of ethological retinal computations under natural visual scenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680974PMC
http://dx.doi.org/10.1016/j.neuron.2023.06.007DOI Listing

Publication Analysis

Top Keywords

natural scenes
12
code natural
8
circuit mechanisms
8
model interneurons
8
natural visual
8
retinal computations
8
natural
6
interpreting retinal
4
retinal neural
4
neural code
4

Similar Publications

We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli.

View Article and Find Full Text PDF

Predicting image memorability from evoked feelings.

Behav Res Methods

January 2025

Department of Psychology, Columbia University, New York, NY, USA.

While viewing a visual stimulus, we often cannot tell whether it is inherently memorable or forgettable. However, the memorability of a stimulus can be quantified and partially predicted by a collection of conceptual and perceptual factors. Higher-level properties that represent the "meaningfulness" of a visual stimulus to viewers best predict whether it will be remembered or forgotten across a population.

View Article and Find Full Text PDF

African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated.

View Article and Find Full Text PDF

Drones are extensively utilized in both military and social development processes. Eliminating the reliance of drone positioning systems on GNSS and enhancing the accuracy of the positioning systems is of significant research value. This paper presents a novel approach that employs a real-scene 3D model and image point cloud reconstruction technology for the autonomous positioning of drones and attains high positioning accuracy.

View Article and Find Full Text PDF

Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!