Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The analysis of thermally labile and high-boiling point compounds by gas chromatography (GC) can be a challenge. One technique to overcome these challenges is low-pressure GC, which uses the vacuum produced from the mass spectrometer and wide-bore columns to elute compounds at significantly lower temperatures. While GC-MS is a powerful technique, comprehensive two-dimensional gas chromatography (GC × GC), allows for resolution of compounds that would typically coelute using GC. In this study, a pesticide standard mixture (8270 MegaMix Standard) was analyzed using a conventional GC × GC-TOFMS configuration (0.25 mm inner diameter (i.d.) to a 0.18 mm i.d. column) and low-pressure GC × GC-TOFMS configuration (0.53 mm i.d. to a 0.53 mm i.d. column). Elution temperatures, sensitivity, and peak capacity were investigated for both configurations. Compounds eluted an average of 30 °C less on the low-pressure GC × GC-TOFMS configuration compared to the conventional GC × GC-TOFMS configuration. Moreover, the compounds were separated in ∼13 min on the low-pressure GC × GC-TOFMS as opposed to 33 min for conventional GC × GC-TOFMS. However, due to the wide-bore columns and faster runtimes the low-pressure GC × GC-TOFMS had a lower, β corrected 2D peak capacity, n, of 1260 while the conventional GC × GC-TOFMS was 3588. Interestingly, both configurations yielded a similar peak capacity production of 93 peaks/min and 107 peaks/min for low-pressure and conventional GC × GC-TOFMS, respectively. A "real world" sample of diesel fuel was tested on the low-pressure and conventional GC × GC-TOFMS configurations and similar results were obtained compared to the pesticide standard mix except the peak capacity production of the low-pressure GC × GC-TOFMS configuration was higher than that of the conventional GC × GC-TOFMS method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2023.464203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!