Ex vivo adult stem cell characterization from multiple muscles in ambulatory children with cerebral palsy during early development of contractures.

Differentiation

Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium; Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium. Electronic address:

Published: November 2023

Cerebral palsy (CP) is one of the most common conditions leading to lifelong childhood physical disability. Literature reported previously altered muscle properties such as lower number of satellite cells (SCs), with altered fusion capacity. However, these observations highly vary among studies, possibly due to heterogeneity in patient population, lack of appropriate control data, methodology and different assessed muscle. In this study we aimed to strengthen previous observations and to understand the heterogeneity of CP muscle pathology. Myogenic differentiation of SCs from the Medial Gastrocnemius (MG) muscle of patients with CP (n = 16, 3-9 years old) showed higher fusion capacity compared to age-matched typically developing children (TD, n = 13). Furthermore, we uniquely assessed cells of two different lower limb muscles and showed a decreased myogenic potency in cells from the Semitendinosus (ST) compared to the MG (TD: n = 3, CP: n = 6). Longitudinal assessments, one year after the first botulinum toxin treatment, showed slightly reduced SC representations and lower fusion capacity (n = 4). Finally, we proved the robustness of our data, by assessing in parallel the myogenic capacity of two samples from the same TD muscle. In conclusion, these data confirmed previous findings of increased SC fusion capacity from MG muscle of young patients with CP compared to age-matched TD. Further elaboration is reported on potential factors contributing to heterogeneity, such as assessed muscle, CP progression and reliability of primary outcome parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2023.06.003DOI Listing

Publication Analysis

Top Keywords

fusion capacity
16
cerebral palsy
8
assessed muscle
8
compared age-matched
8
muscle
7
capacity
5
vivo adult
4
adult stem
4
stem cell
4
cell characterization
4

Similar Publications

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

Biosynthetic small molecule antigens mimics medicated lateral flow immunoassay for mycotoxin Fumonisin B using nanobody fusion proteins.

J Hazard Mater

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; In Vitro Diagnostic Technology Innovation Center for Nanobody, No. 1166 Yiyuan Road, Nanchang, Jiangxi Province 330038, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Nanchang 330200, China. Electronic address:

Lateral flow immunoassays (LFAs) are widely used in point-of-care testing (POCT) for detecting small molecules. However, their application is often hindered by the complex synthesis of traditional chemically synthesized antigens. Nanobody-based coating antigen mimics have shown excellent analytical performance in various immunoassay platforms, but their application in LFAs still faces challenges.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Background: UK local authorities are developing and implementing Whole Systems Approaches to childhood obesity to tackle persistent and complex health inequalities. However, there is a lack of research on the practical application of these approaches. This paper reports on findings of a study into the initial implementation of this approach in Dundee, Scotland.

View Article and Find Full Text PDF

Thermal Behavior of -Octanol and Related Ether Alcohols.

J Chem Eng Data

January 2025

Institute of Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, Darmstadt D-64287, Germany.

The thermal behavior of -octanol and related ether alcohols has been studied by differential scanning calorimetry (DSC). The melting point, heat of fusion, and isobaric heat capacities of -octanol obtained from the DSC measurements are in good agreement with literature values. The ether alcohols display kinetic barriers for forming a solid phase during cooldown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!