The water extraction and ethanol precipitation method is an extraction method based on the solubility characteristics of polysaccharides that offers wide applicability in the extraction and separation of plant polysaccharides. However, this method leads to large amounts of proteins, nucleic acids, pigments, and other impurities in the polysaccharides products, which makes downstream purification complicated and time-consuming. In this study, a green, high-density natural deep eutectic solvents was used for the high-purity extraction and separation of polysaccharides from Astragalus membranaceus (Fisch) Bge. var. Mongholicus (Bge.) Hsiao roots under ultrasound-assisted conditions. In this study, 16 different natural deep eutectic solvents were designed to screen the best solvent for extracting Astragalus polysaccharides (APSs). Based on the yield and recovery of APSs, a natural deep eutectic solvents composed of choline chloride and oxalic acid with a molar ratio of 1:2 was selected. The related factors affecting polysaccharides extraction and solvent precipitation were investigated. To improve the operating methodology, single-factor trials, a Plackett-Burman design, and a Box-Behnken design were used. The optimal extraction process conditions were obtained as follows: water content of 55%, liquid-solid ratio of 24 mL/g, ultrasonic irradiation time of 54 min, ultrasonic irradiation temperature of 50 °C, ultrasonic irradiation power of 480 W, ethanol precipitation time of 24 h, and ethanol concentration of 75%. Under optimal extraction conditions, the recovery of APSs was 61.4 ± 0.6 mg/g. Considering the special matrix characteristics of A. membranaceus var. Mongholicus roots, physical-technology-based ultrasonic waves promote penetration, and the mass transfer function also solves the bottleneck of high-viscosity deep eutectic solvents in the extraction stage. In comparison with the conventional method, the proposed method based on deep eutectic solvents isolation can significantly increase APSs recovery, which is beneficial to simplifying the process of polysaccharides purification by using solvent properties to separate extracts and reduce impurities in APSs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368916 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2023.106522 | DOI Listing |
Plants (Basel)
January 2025
Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.
View Article and Find Full Text PDFPlants (Basel)
January 2025
University of Belgrade-Faculty of Chemistry, Department of Analytical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland.
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).
View Article and Find Full Text PDFMolecules
January 2025
Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia.
Essential oils (EOs) are highly valued in the cosmetic and food industries for their diverse properties. However, traditional extraction methods often result in low yields, inconsistent compositions, lengthy extraction times, and the use of potentially harmful solvents. Natural deep eutectic solvents (NADES) have emerged as promising alternatives, offering advantages such as higher efficiency, cost-effectiveness, biodegradability, and tunable properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!