We report resonant elastic x-ray scattering of long-range magnetic order in EuPtSi_{3}, combining different scattering geometries with full linear polarization analysis to unambiguously identify magnetic scattering contributions. At low temperatures, EuPtSi_{3} stabilizes type A antiferromagnetism featuring various long-wavelength modulations. For magnetic fields applied in the hard magnetic basal plane, well-defined regimes of cycloidal, conical, and fanlike superstructures may be distinguished that encompass a pocket of commensurate type A order without superstructure. For magnetic field applied along the easy axis, the phase diagram comprises the cycloidal and conical superstructures only. Highlighting the power of polarized resonant elastic x-ray scattering, our results reveal a combination of magnetic phases that suggest a highly unusual competition between antiferromagnetic exchange interactions with Dzyaloshinsky-Moriya spin-orbit coupling of similar strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.266701 | DOI Listing |
Sci Rep
January 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, China.
The laminae of varying lithologies are characteristic of shale oil reservoirs, with their pronounced heterogeneity and fluid-solid coupling significantly impacting oil productivity. To this end, this study initially quantified the permeability and mechanical heterogeneity in lamina-developed shale through permeability tests and quasi triaxial mechanical experiments on shale cores from different orientations in the Jiyang Depression. These tests revealed marked brittleness in horizontally oriented cores and elasticity in vertically oriented cores.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, India.
Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.
View Article and Find Full Text PDFUltrason Imaging
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
We have developed a 3-D acoustic radiation force impulse (ARFI) prostate imaging system to identify regions suspicious for cancer and guide a targeted prostate biopsy in a single visit. The system uses a side-fire transrectal probe and an automated rotation stage to acquire ARFI and B-mode image volumes, combined with 3-D visualization and targeting software to enable biopsy target identification and guide a transperineal (TP) biopsy. The system was tested in the first clinical trial of its kind, with subjects serially undergoing ARFI-guided targeted TP biopsy, multiparametric magnetic resonance imaging (mpMRI)-ultrasound fusion TP biopsy, and systematic sampling TP biopsy.
View Article and Find Full Text PDFBone Res
January 2025
Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
Mult Scler Relat Disord
December 2024
Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Marchioninistrasse 15 81377, Munich, Germany; Pettenkofer School of Public Health, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany. Electronic address:
Background: The individual treatment response in people with relapsing-remitting multiple sclerosis (RRMS) remain unpredictable. In order to support medical decisions, we aimed to predict response to fingolimod compared to placebo, by developing and validating prognostic multivariable models.
Methods: We included two-year follow-up from intention-to-treat populations of two multi-country placebo-controlled randomized controlled trials (RCT) of daily fingolimod 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!