Forster resonance energy transfer (FRET) is an efficient method to visualize the protein-protein interaction in living cells. This technique is based on transfer of energy between two different fluorophores that are fused to two interacting proteins. In this chapter, we described the FRET assay to visualize the protein-protein interaction in plant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3327-4_13DOI Listing

Publication Analysis

Top Keywords

visualize protein-protein
12
forster resonance
8
resonance energy
8
energy transfer
8
transfer fret
8
protein-protein interaction
8
fret visualize
4
protein-protein interactions
4
interactions plant
4
plant cell
4

Similar Publications

Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.

View Article and Find Full Text PDF

Identification of crucial pathways and genes linked to endoplasmic reticulum stress in PCOS through combined bioinformatic analysis.

Front Mol Biosci

January 2025

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.

View Article and Find Full Text PDF

The relevance of endoplasmic reticulum lumen and Anoctamin-8 for major depression: Results from a systems biology study.

J Psychiatr Res

January 2025

Laboratory of Molecular Psychiatry. Rua Ramiro Barcelos, Centro de Pesquisa Experimental - Hospital de Clínicas de Porto Alegre (HCPA), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 2350, Brazil; Postgraduate Program of Psychiatry and Behavioral Sciences. Rua Ramiro Barcelos, Department of Psychiatry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 2400, Brazil.

Major depressive disorder (MDD) is a highly prevalent and debilitating disorder, yet its pathophysiology has not been fully elucidated. The aim of this study is to identify novel potential proteins and biological processes associated with MDD through a systems biology approach. Original articles involving the measurement of proteins in the blood of patients diagnosed with MDD were selected.

View Article and Find Full Text PDF

Background: At present, although some studies have offered certain insights into the genetic factors related to unruptured intracranial aneurysms (uIAs), the potential genetic targets associated with uIAs remain largely unknown. Thus, this research adopted Mendelian randomization (MR) analysis to study two genome-wide association studies on uIAs, aiming to determine the reliable genetic susceptibility and potential therapeutic targets for uIAs.

Methods: This study summarizes the data of expression quantitative trait loci (eQTL) as exposure data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!