Carbon nanomaterials are widely used in biomedical applications due to their versatile properties. These are the attractive candidates for the carrying of anticancer drugs, genes, and proteins for chemotherapy. Imatinib is an effective chemotherapy drug whose toxicity has created a significant limitation in treatment. In this research, a new biocompatible nanocarrier based on albumin-magnetite graphene oxide conjugates was reported for the loading and release of imatinib. The magnetite graphene oxide nanocomposite was investigated by ultra violet-visible spectroscopy (UV-Vis), field emission scanning electron microscope (FE-SEM), X-ray diffraction spectroscopy (XRD) and energy diepersive X-ray spectroscopy (EDX) methods. The crystallite size of FeO nanoparticles on graphene oxide obtained from XRD is about 14 nm which is in agreement well with the SEM results. We show that magnetite graphene oxide conjugated with albumin is an extremely efficient carrier. An efficient loading of IM, 81% at pH 7.0, time 2 h and initial concentration of 1 mg/mL was seen onto magnetite graphene oxide-albumin in comparison to graphene oxide and magnetite graphene oxide due to the presence of oxygen and nitrogen functional groups of albumin. Upon the pH 9.0 and 7.0, 7% and 16% imatinib could be released from the magnetite graphene oxide-albumin in a time span of 5 h but when exposed pH 4.0 the corresponding 31% was released in 5 h. After 20 h, 21, 42 and 68% of imatinib was released at pH 9.0, 7.0 and 4.0, respectively. This illustrates the major benefits of the developed approach for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348929 | PMC |
http://dx.doi.org/10.1007/s10856-023-06735-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!