Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adenine nucleotide translocase (ANT) is the prototypical member of the mitochondrial carrier protein family, primarily involved in ADP/ATP exchange across the inner mitochondrial membrane. Several carrier proteins evolutionarily related to ANT, including SLC25A24 and SLC25A25, are believed to promote the exchange of cytosolic ATP-Mg with phosphate in the mitochondrial matrix. They allow a net accumulation of adenine nucleotides inside mitochondria, which is essential for mitochondrial biogenesis and cell growth. In the last two decades, mutations in the heart/muscle isoform 1 of ANT (ANT1) and the ATP-Mg transporters have been found to cause a wide spectrum of human diseases by a recessive or dominant mechanism. Although loss-of-function recessive mutations cause a defect in oxidative phosphorylation and an increase in oxidative stress which drives the pathology, it is unclear how the dominant missense mutations in these proteins cause human diseases. In this review, we focus on how yeast was productively used as a model system for the understanding of these dominant diseases. We also describe the relationship between the structure and function of ANT and how this may relate to various pathologies. Particularly, mutations in Aac2, the yeast homolog of ANT, were recently found to clog the mitochondrial protein import pathway. This leads to mitochondrial precursor overaccumulation stress (mPOS), characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. We anticipate that in coming years, yeast will continue to serve as a useful model system for the mechanistic understanding of mitochondrial protein import clogging and related pathologies in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592433 | PMC |
http://dx.doi.org/10.1002/iub.2767 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!