Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorinated piperidines find wide applications, most notably in the development of novel therapies and agrochemicals. Cyclization of alkenyl -tosylamides promoted by BF-activated aryliodine(III) carboxylates is an attractive strategy to construct 3-fluoropiperidines, but it suffers from selectivity issues arising from competitive oxoaminations and the inability to easily modulate the reactions diastereoselectivity. Herein, we report an itemized optimization of the reaction conditions carried out on both cyclic and acyclic substrates and outline the origins of substrate- and reagent-based stereo-, regio-, and chemoselectivity. Extensive mechanistic studies encompassing multinuclear NMR spectroscopy, deuterium labeling, rearrangements on stereodefined substrates, and careful structural analyses (NMR and X-ray) of the reaction products are performed. This revealed the processes and interactions crucial for achieving controlled preparation of 3-fluoropiperidines using I(III) chemistry and has provided an advanced understanding of the reaction mechanism. In brief, we propose that BF-coordinated I(III) reagents attack C═C to produce the corresponding iodiranium(III) ion, which then undergoes diastereodetermining 5--cyclization. Transiently formed pyrrolidines with an exocyclic σ-alkyl-I(III) moiety can further undergo aziridinium ion formation or reductive ligand coupling processes, which dictate not only the final product's ring size but also the chemoselectivity. Importantly, the selectivity of the reaction depends on the nature of the ligand bound to I(III) and the presence of electrolytes such as TBABF. Reported findings will facilitate the usage of ArI(III)-dicarboxylates in the reliable construction of fluorinated azaheterocycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.3c00944 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!