Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/EBC20230007 | DOI Listing |
Int J Mol Sci
January 2025
Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland.
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
Vitamin B (cobalamin, herein B) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B is often scarce, largely because only few prokaryotes can synthesize B and are thus considered B-prototrophs. B-auxotrophy is mostly manifested by the absence of the B-independent methionine synthase, MetE.
View Article and Find Full Text PDFInt J Fertil Steril
January 2025
Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Email:
Background: Oxidative aggression is a hallmark of varicocele and may depend on decreased reactive ability of the endogenous antioxidant system following heat stress. We aimed to investigate the underlying mechanisms. Therefore, the expression of the main enzyme proteins involved in the generation of endogenous antioxidant power, cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), heme oxygenase (HO-1), and also, some of the metabolites (methionine, homocysteine, taurine and vitamin B6) reporting on their activity was investigated using a surgical varicocele model in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!