A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A phyco-nanobionics biohybrid system for increased carotenoid accumulation in UUIND6. | LitMetric

A phyco-nanobionics biohybrid system for increased carotenoid accumulation in UUIND6.

J Mater Chem B

Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India.

Published: August 2023

Recent advancements in "phyco-nanobionics" have sparked considerable interest in the ability of microalgae to synthesize high-value natural bioactive compounds such as carotenoid pigments, which have been highlighted as an emergent and vital bioactive compound from both industrial and scientific perspectives. Such bioactive compounds are often synthesized by either altering the biogenetic processes existing in living microorganisms or using synthetic techniques derived from petroleum-based chemical sources. A bio-hybrid light-driven cell factory system was established herein by using harmful macroalgal bloom extract (HMBE) and efficient light-harvesting silver nanoparticles (AgNPs) to synthesize HMBE-AgNPs and integrating the synthesized HMBE-AgNPs in various concentrations (1, 2.5, 5 and 10 ppm) into the microalgae UUIND6 to improve the overall solar-to-chemical conversion efficiency in carotenoid pigment synthesis in microalgae. The current study findings found high biocompatibility of 5 ppm HMBE-AgNP concentration that can serve as a built-in photo-sensitizer and significantly improve ROS levels in microalgae (6.75 ± 0.25 μmol HO g), thus elevating total photosynthesis resulting in a two-fold increase in carotenoids (457.5 ± 2.5 μg mL) over the native microalgae without compromising biomass yield. NMR spectroscopy was additionally applied to acquire a better understanding of pure carotenoids derived from microalgae, which indicated similar peaks in both spectra when compared to β-carotene. Thus, this well-planned bio-hybrid system offers a potential option for the cost-effective and long-term supply of these natural carotenoid bio-products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00960bDOI Listing

Publication Analysis

Top Keywords

bioactive compounds
8
microalgae
6
phyco-nanobionics biohybrid
4
biohybrid system
4
system increased
4
carotenoid
4
increased carotenoid
4
carotenoid accumulation
4
accumulation uuind6
4
uuind6 advancements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!