This work evaluated the cardioprotective effects of sonlicromanol, a new mitochondrial-directed drug, on cardiac ischemia/reperfusion (I/R) injury and explored the involvement of inflammatory and oxidative responses via activation of AMPK-eNOS-mitochondrial pathway. Male Sprague-Dawley rats underwent regional I/R injury through in vivo left anterior descending (LAD) coronary artery ligation for 40 minutes followed by 24 hours of reperfusion. Pretreatment of rats with sonlicromanol considerably reduced cardiac I/R injury in a dose-dependent manner, as indicated by lower infarct size and serum creatine-kinase levels, and improved cardiac function after reperfusion. Sonlicromanol (50 mg/kg) significantly reduced TNF-α, interleukin-1β, NF-κB-p65, and 8-isoprostane levels while increased manganese-superoxide dismutase and nitric-oxide levels and expression of eNOS and AMPK protein. It significantly reduced mitochondrial membrane depolarization and reactive oxygen species (ROS) levels. However, AMPK inhibition significantly reduced sonlicromanol protective actions. Cardioprotection by sonlicromanol was achieved by moderating inflammatory and oxidative responses, and AMPK/eNOS/mitochondrial signaling is a crucial regulator of these actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/gpb_2023003 | DOI Listing |
FASEB J
January 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.
Materials And Methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model.
Int J Biol Macromol
January 2025
Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. Electronic address:
Purpose: Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury.
Methods: SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects.
Int Immunopharmacol
January 2025
Medical College of Guangxi University, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, Fuzhou, 350001, China; Stem Cell Therapy Research Center, Fuzhou 350001, China.. Electronic address:
Inflammation and oxidative stress are pivotal factors in the onset and progression of secondary injury following cerebral ischemia-reperfusion (I/R). Mogroside V (MV), a primary active compound of Siraitia grosvenorii, exhibits significant anti-inflammatory and antioxidant properties. However, its specific effects in cerebral ischemia remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!