AI Article Synopsis

Article Abstract

Low-cost uncrewed aerial vehicles (UAVs) are replacing manned aircraft for airborne radiation mapping applications such as nuclear accident response scenarios or surveying ore deposits and mine sites because of their cost-effectiveness and ability to conduct surveys at lower altitude compared to manned counterparts. Both multi-rotor UAVs and fixed-wing UAVs are well established technologies for aerial radiation mapping applications, however, both also have drawbacks: multi-rotor UAVs are very limited in flight time and range, and fixed-wing UAVs usually require facilities for take-off and landing. A compromise solution is introduced in this work, using a fixed-wing vertical take-off and landing (VTOL) UAV that combines the flexibility of a multi-rotor UAV with the range and flight time of a fixed-wing UAV. The first implementation of a VTOL with radiation mapping capabilities is presented, based on a commercial WingtraOne UAV augmented with CsI scintillator and CZT semiconductor gamma spectrometers. The radiation mapping capabilities of the prototype are demonstrated in a case study, mapping the distribution of radionuclides around the South Terras legacy uranium mine in the south of England, United Kingdom, and the results are compared with previous studies using multi-rotor and manned aircraft to survey the same area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337992PMC
http://dx.doi.org/10.3389/frobt.2023.1137763DOI Listing

Publication Analysis

Top Keywords

radiation mapping
16
take-off landing
12
fixed-wing vertical
8
vertical take-off
8
landing vtol
8
uncrewed aerial
8
aerial vehicles
8
manned aircraft
8
mapping applications
8
multi-rotor uavs
8

Similar Publications

Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Purpose: To provide a fast quantitative imaging approach for a 0.55T scanner, where signal-to-noise ratio is limited by the field strength and k-space sampling speed is limited by a lower specification gradient system.

Methods: We adapted the three-dimensional spiral projection imaging MR fingerprinting approach to 0.

View Article and Find Full Text PDF

Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays.

DNA Repair (Amst)

January 2025

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!