Although allopolyploid species are common among natural and crop species, it is not easy to distinguish duplicated genes, known as homeologs, during their genomic analysis. Yet, cost-efficient RNA sequencing (RNA-seq) is to be developed for large-scale transcriptomic studies such as time-series analysis and genome-wide association studies in allopolyploids. In this study, we employed a 3' RNA-seq utilizing 3' untranslated regions (UTRs) containing frequent mutations among homeologous genes, compared to coding sequence. Among the 3' RNA-seq protocols, we examined a low-cost method Lasy-Seq using an allohexaploid bread wheat, . HISAT2 showed the best performance for 3' RNA-seq with the least mapping errors and quick computational time. The number of detected homeologs was further improved by extending 1 kb of the 3' UTR annotation. Differentially expressed genes in response to mild cold treatment detected by the 3' RNA-seq were verified with high-coverage conventional RNA-seq, although the latter detected more differentially expressed genes. Finally, downsampling showed that even a 2 million sequencing depth can still detect more than half of expressed homeologs identifiable by the conventional 32 million reads. These data demonstrate that this low-cost 3' RNA-seq facilitates large-scale transcriptomic studies of allohexaploid wheat and indicate the potential application to other allopolyploid species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336777 | PMC |
http://dx.doi.org/10.1093/nargab/lqad067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!