Background: The medium cutoff (MCO) dialyzer increases the removal of several middle molecules more effectively than high-flux hemodialysis (HD). However, comparative data addressing the efficacy and safety of MCO dialyzers vs. postdilution hemodiafiltration (HDF) in Korean patients are lacking.
Methods: Nine patients with chronic HD were included in this pre-post study. Patients underwent HD with an MCO dialyzer for 4 weeks, followed by a 2-week washout period using a high-flux dialyzer to minimize carryover effects, and then turned over to postdilution HDF for 4 weeks. Reduction ratios and differences in the uremic toxins before and after dialysis were calculated from the MCO dialysis, postdilution HDF, and high-flux HD. In the in vitro study, EA.hy926 cells were incubated with dialyzed serum.
Results: Compared to postdilution HDF, the MCO dialyzer achieved significantly higher reduction ratios for larger middle molecules (myoglobin, kappa free light chain [κFLC], and lambda FLC [λFLC]). Similarly, the differences in myoglobin, κFLC, and λFLC concentrations before and after the last dialysis session were significantly greater in MCO dialysis than in postdilution HDF. The expression of Bax and nuclear factor κB was decreased in the serum after dialysis with the MCO dialyzer than with HDF.
Conclusion: Compared with high-volume postdilution HDF, MCO dialysis did not provide greater removal of molecules below 12,000 Da, whereas it was superior in the removal of larger uremic middle molecule toxins in patients with kidney failure. Moreover, these results may be expected to have an anti-apoptotic effect on the human endothelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698066 | PMC |
http://dx.doi.org/10.23876/j.krcp.21.287 | DOI Listing |
Acta Biochim Pol
December 2024
Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdańsk, Poland.
Various high-efficiency hemodialysis techniques exist, including different online high- volume hemodiafiltration (HDF) modes and expanded hemodialysis (HDx) utilizing dialyzers with medium cut-off (MCO) membranes. This study aimed to evaluate the efficacy of uremic toxin removal among four modalities: (I) HDx, (II) pre-dilution HDF (PRE-HDF), (III) mixed-dilution HDF (MIX-HDF), and (IV) post-dilution HDF (POST-HDF), each applied for 1 week in a randomized order. This research was a single-center, prospective, open-label, exploratory crossover study.
View Article and Find Full Text PDFRen Fail
December 2024
Division of Nephrology, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea.
Cureus
August 2024
Clinic of Maxillofacial Surgery, University Hospital "St. Marina", Varna, BGR.
Introduction Online hemodiafiltration (OL-HDF) is the most effective renal replacement therapy (RRT), which allows the enhanced removal of small and large uremic toxins by combining diffusion and convective transport of solutes. Although the goal of OL-HDF is to provide greater clearance of solutes with a preference for intermediate molecules responsible for many of the complications of chronic kidney disease (CKD), the studies reported to date and their meta-analyses are conflicting in nature and do not show a significant advantage of convective therapies on patient prognosis. Materials and methods At the Clinic of Nephrology and Dialysis, University Hospital "St.
View Article and Find Full Text PDFBlood Purif
July 2024
Nephrology and Kidney Transplantation Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carità" University Hospital, Novara, Italy.
Introduction: Despite major advances in the field of dialysis, there are still some unmet needs such as reducing inflammation through adequate depuration. It is well known that the wide spectrum of pro-inflammatory and pro-atherosclerotic uremic toxins are inefficiently removed by current dialysis techniques. Adsorption seems to be an extra tool to remove toxins, but its effect and optimization have not been widely studied.
View Article and Find Full Text PDFBMC Nephrol
July 2024
Fresenius Medical Care Deutschland GmbH, Global Biomedical Evidence Generation, Global Medical Office, 61352, Bad Homburg, Germany.
Background: Hemodialyzers should efficiently eliminate small and middle molecular uremic toxins and possess exceptional hemocompatibility to improve well-being of patients with end-stage kidney disease. However, performance and hemocompatibility get compromised during treatment due to adsorption of plasma proteins to the dialyzer membrane. Increased membrane hydrophilicity reduces protein adsorption to the membrane and was implemented in the novel FX CorAL dialyzer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!