A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Refinement of nanoporous copper by dealloying the Al-Cu alloy in NaOH solution containing sodium dodecyl sulfate. | LitMetric

Refinement of nanoporous copper by dealloying the Al-Cu alloy in NaOH solution containing sodium dodecyl sulfate.

Phys Chem Chem Phys

School of Materials Science and Engineering, University of Jinan, No. 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong Province, China.

Published: July 2023

This work reports the refinement of nanoporous copper (NPC) ligaments by introducing the sodium dodecyl sulfate (SDS) surfactant in the dealloying process. The AlCu (at%) alloy precursor is chemically dealloyed in a mixed solution of NaOH and SDS surfactant, producing NPC with a hierarchical microstructure. Micron-scaled skeletons that build up higher level networks consist of geometrically similar nano-scaled bi-continuous ligament-pore networks at the lower level. It has been found that the size of the ligaments in the lower level networks reduces from ∼32 nm to ∼24 nm with increasing SDS concentration to 1 mM. Further increasing the SDS concentration to 5 mM only leads to a slight ligament size decrease to ∼21 nm. Remarkably, nano-sized cones are formed on the lower level network surface in the dealloying solution containing 1 mM SDS, and the cone number greatly rises when the SDS concentration increases to 5 mM. The surface diffusivity of Cu adatoms is evaluated based on the experimental data, and the refinement of the ligament as well as the formation of cones are associated with the decreased surface diffusivity and the retarded Cu adatom motions with the addition of SDS. Quantum chemical calculations and molecular dynamics simulations are performed to model the adsorption behavior of SDS. It has been found that the SDS-substrate interaction increases with the number of SDS molecules before SDS reaches saturation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02373gDOI Listing

Publication Analysis

Top Keywords

lower level
12
sds concentration
12
sds
10
refinement nanoporous
8
nanoporous copper
8
sodium dodecyl
8
dodecyl sulfate
8
sds surfactant
8
level networks
8
increasing sds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!